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Rigorous upper bounds are derived for large-scale turbulent flame speeds in a 
prototypical model problem. This model problem consists of a reaction-diffusion 
equation with KPP  chemistry with random advection consisting of a turbulent 
unidirectional shear flow. When this velocity field is fractal with a Hurst expo- 
nent H with 0 < H <  1, the almost sure upper bounds suggest that there is an 
accelerating large-scale turbulent flame front with the enbanced anomalous 
propagation law y = CHt I + n for large renormalized times. In contrast, a similar 
rigorous almost sure upper bound for velocity fields with finite energy yields 
the turbulent flame propagation law y =  ~Ht within logarithmic corrections. 
Furthermore, rigorous theorems are developed here which show that upper 
bounds for turbulent flame speeds with fractal velocity fields are not self-averag- 
ing, i.e., bounds for the ensemble-averaged turbulent flame speed can be 
extremely pessimistic and misleading when compared with the bounds for every 
realization. 

KEY W O R D S :  Turbulence; combustion; fractal fields. 

INTRODUCTION 

A significant experimental observation in premixed turbulent combustion is 
enhanced flame propagation velocities exceeding the ordinary laminar 
flame speed. IL21 In turbulent premixed combustion, the convecting fluid 
velocity typically involves many spatiotemporal scales which are all larger 
than the flame thickness. An important research topic in the combustion 
community 13-14~ involves developing theories which provide effective 
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enhanced flame speeds at large scales in turbulent combustion and exploit 
the great disparity between the largest scales of variation of the velocity 
field and the flame thicknessJ 9 ~t~ Some of the approaches developed in an 
ad hoc fashion to predict large-scale turbulent flame speeds include the 
renormalization group ~7.s~ as well as other closure theories) 5'6~ Recently, 
the authors c~2) have developed a rigorous renormalization theory for large- 
scale front dynamics for turbulent reaction-diffusion equations with two 
separate velocity scales which are both larger than the flame thickness. 
Embid et al. ~3~ have developed the implications of this theory in a 
prototype example and have compared the rigorous theory with several 
ad hoc approximation procedures mentioned earlier in this context of 
turbulent velocity fields with two separate scalesJ ~4) 

Here we begin the rigorous mathematical study of turbulent reaction- 
diffusion equations with many energetic velocity scales and obtain rigorous 
upper bounds on the turbulent flame speed in a prototypical model 
problem (see p. 3 of ref. 12). These rigorous upper bounds exhibit a change 
of phase from bounded turbulent flame velocities on large scales, when the 
velocity statistics have a band-limited energy spectrum, to anomalous tem- 
poral evolving and accelerating turbulent flame velocities, when the 
velocity statistics have fractal scaling over a wide spatial range with inter- 
esting dependence on the Hurst exponent 11, which serves as the phase 
parameter. For the Kolmogoroff velocity spectrum in the model with 
H =  1/3, these formulas are qualitatively similar to those developed by 
Kerstein and Ashurs( 51 through a completely different approach. Further- 
more, we also develop rigorous theorems which show that upper bounds 
for turbulent flame speeds with fractal velocity fields are not self-averaging, 
i.e., bounds for the ensemble-averaged turbulent flame speed can be 
extremely pessimistic and misleading when compared with the bounds for 
almost every realization. This phenomenon is a rigorous signature of inter- 
mittency in turbulent combustion with fractal velocity fields where excep- 
tional sets of rare events contribute disproportionately to the ensemble 
average when compared with the typical case. The rigorous bounds estab- 
lished here also indicate that such phenomena do not occur when the 
velocity field has a band-limited energy spectrum and there can be at most 
much weaker intermittency. 

In this paper we study the model problem for turbulent combustion 
given by 

T , - 2  dT+v;.(x) T,.+wT.,.+ KT(T--  1)=0 

Tl,=o= To 

in R2x (0, 0o) 

on R 2 x {0} 
(1) 
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with the diffusion coefficient x > 0, the reaction rate K, and the sweeping 
velocity w all fixed constants, and with the initial data To(x, y) given by 

T~ 10 if if y>0Y<0 (2) 

The velocity field v;.(x) is a stationary zero-mean Gaussian random field 
with the spectral representation 

D(x) = (2n)= I/2 Vo fl*l ~z eiXk~tl/2(Ikl) Ikl -1'/2'- "W(dk) (3) 

and the parameter H satisfies 

- o o < H <  1 (4) 

In (3), W(dk) is complex Oaussian white noise with 

(W(dk) W(dk') ) =O(k + k') dk dk' 

Here and below, ( - )  denotes averaging with respect to the velocity 
statistics. The ultraviolet cutoff r is a nonnegative, continuous, 
rapidly decreasing function satisfying 

@~(0) = 1 (5) 

while the infrared cutoff parameter 2 satisfies 2 ~ 1. 
The prototype problem in (1) combines the fully developed turbulent 

shear flow models from refs. 15 and 16 with KPP chemistry. The problem 
in (1)-(4) arises naturally through nondimensionalizing the turbulent reac- 
tion-diffusion equations by utilizing velocity dissipation scales for space 
and time from conventional turbulence theory. ~5~ The fact that the cutoff 
function O~([kl) is rapidly decreasing automatically guarantees that the 
velocity field has very little energy below the dissipation scale and the 
assumptions that K and K both remain finite with this choice of scales 
guarantee that the laminar flame thickness (K/K) 1/2 is of the order of the 
dissipation length scale. The parameter 2 represents the ratio of the dissipa- 
tion scale to the integral scale 1~5~ and in conventional turbulence theory, 
2=(Re)  -3/4, with Re the Reynolds number, ctS~ Here we are especially 
interested in the situation where there is a fully developed turbulent flow 
field with many spatial scales which influence the large-scale turbulent 
flame front propagation; thus, we are interested in the behavior o f ( l )  as 
2--,0. 
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The character of the velocity field v;.(x) in the limit 2 ~ 0 is completely 
different depending on whether the parameter H satisfies H < 0  or 
0 < H < I .  For  H < 0 ,  the mean energy lim;._o(V~(0)) is finite; for 
0 < H <  1 there is infrared divergence of energy and instead the velocity 
difference satisfies for Ix[ >> 1 and 0 < H < 1 

lim ((v~(x + x ' ) - v ; . ( x ' ) )  2) = C ~ V  o Ixl zH 
2 4 0  

(6) 

with CH a universal constant. The identity in (6) guarantees that, when 
viewed at large scales, the Gaussian random velocity field is nowhere dif- 
ferentiable and fractal with a Hurst exponent H for 0 < H < 1. We expect 
an anomalous boost in turbulent flame speeds in the parameter regime 
0 < H <  1 due to the wrinkling at all scales of the flame front by the 
random shear flow, which enhances combustion. On the other hand, for 
H < 0 ,  the velocity field has finite energy and we anticipate that the 
enhanced flame propagation behaves similar to that in the situation with 
separate velocity scalesJ 12-14j The bounds which we state below and derive 
in precise form in the remainder of this paper confirm all of this intuition. 

To study the turbulent flame speeds at large scales and long times, we 
introduce the rescaled variable 

T;(x,  y, t )=  T(2-1x,  ~(2) -1 y, f l (2) - '  t) (7) 

where the scaling group parameters 0~(2), fl(2) are chosen to give a non- 
trivial limit. For  the conventional KPP  problem with separate scales, 
the choices e ( 2 ) = 2 ,  f l (2 )=2  yield large-scale geometric front propaga- 
tionJ 12. 17. 181 In general we need to choose c~(2) and fl(2) as functions of the 
parameter H which are compatible with the intrinsic scaling o f ( l )  in the 
large-scale limitJ19~ The next results indicate that this can be achieved for 
almost sure upper bounds on the turbulent flame speed in the y direction: 

Theorem 1 (The fractal case). Consider the regime 0 < H < I  
with fractal large-scale velocity fields and choose the anomalous scaling 
~( 2 ) = 21 + l~ and fl( 2 ) = 2 in ( 7 ). There is a universal constant C n, depending 
on ]xl + Itl and Cn in (6), such that as ). --, 0, T~'(x, y, t) --, 0 a.s. for large 
t provided y satisfies the bound 

Y > Vo Cut((2KK)1/2 t)H (8) 

Theorem 2 (The smooth case). Assume Hsatisfies H < 0 ,  choose 
~(2) = 2  ln2[ '/2 and fl(2)=2, and let 7o = Vo((2n) -I j ~, >~(Ikl)Ikl -~ -andk)'/'-. 
Then for almost every realization of the velocity field, there is a constant 
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C depending on that realization such that as 2 --* 0, Ta(x, y, t) --* 0 for large 
t provided that y satisfies the bound 

y > Cyo(ln( Ixt + t)) 1/2 t (9) 

A precise version of Theorems 1 and 2 applying at all rescaled times 
t is stated and proved, respectively, in Sections 2 and 3 of this paper. 

The upper bound in (8) suggests that for fractal velocity fields, 
turbulent flame fronts for (1) in this scaling regime accelerate with the 
anomalous enhanced propagation law 

y=Vo( (2~ 'K)  I/2)HCHtI+H for 0 < H < I  (10) 

while with finite energy for the large-scale velocity the propagation rate is 

y = C , ( H )  t for H < 0  (11) 

with (ln t) ~/2 corrections. Thus, the upper bounds on turbulent flame 
propagation in Theorems 1 and 2 predict a change of phases across the 
boundary H = 0  with the typical behavior from (11) for H < 0  and the 
anomalous behavior in (10) for the fractal regime with 0 < H <  1. We note 
that the anomalous scaling law in (8) or (10) is scale invariant under the 
group of transformations. 

y =21+Hy, t ' = 2 t  

utilized in rescaling T;" in (7) and furthermore, the constant 
Vo((2KK) I/2)H CH has dimensional units compatible with this law. With the 
value of the Kolmogoroff exponent H =  1/3, Theorem 1 suggests that tur- 
bulent flames in this large-scale limit propagate according to a t 4/3 law which 
is reminiscent of a recent prediction by Kerstein and AshurstJ sl 

In Section 4, we derive upper bounds for the ensemble average over all 
velocity realizations, 

( T ; ' )  = ( T (2-1x ,  ~(2) -1 y, fl(2) - l  t ))  (12) 

We establish the following result: 

Theorem 3 (Ensemble-averaged bounds). (A) For H with 
0 < H < I ,  choose 0~(2), fl(2) to satisfy fl(2)=o~2/3(2)2-2tl/3 and 
2fl 1 (2)~0  as 2--*0. Then as 2--*0, ( T  ~') --*0 for 

y > (2KKCo) ~/-~ t 3/2 (13) 

with Co= V0~lkl~, [k[l-~dk.  



938 Majda and Souganidis 

(B) For H with H < 0 ,  choose a (2 )=f l (2 )=2 .  Then as 2--*0, 
( T  ~') ~ 0  for 

y > (2Kx) 1/2 t (14) 

By comparing (8) or (10) with (13), we observe that ensemble- 
averaged upper bounds are completely misleading for the fractal velocity 
regime with 0 < H < 1 and exhibit no dependence on H. On the other hand, 
in the case H < 0 with smooth velocity fields of finite energy, there is weak 
intermittency and the bounds in (9) and (11) are compatible with the 
ensemble-averaged bound in (14) within logarithmic corrections. Similar 
ensemble-averaged upper bounds as in Theorem 3 for the model from p. 3 
of ref. 12 have been developed independently by Fedotov ~-'~ in the special 
case ~(2) = 2. 

The only nonsteady feature of the velocity field discussed in this paper 
is through the large-scale sweeping effects of the mean flow w, which intro- 
duces streamlines which block the transport in the y direction. An impor- 
tant and interesting direction of research, even in the context of this model, 
is to incorporate more complex spatiotemporal statistics in the shear 
f l o w  ~ )5, 161 besides the large-scale sweep. Many of the tools developed here 
are relevant for that more complex and physically relevant situation, which 
is a topic of current investigation by the authors. 

1. ALMOST SURE UPPER BOUNDS FOR FRACTAL VELOCITY 
FIELDS 

Throughout this section we assume that 

0 < H < I  

and use the Gaussian random field V with spectral representation 

15) 

V(x) = (2~)-,/z Vo fl*l 

In view of (15) the covariance 

e i'* Ikl-~)/-'1-" W(dk) 
>11 

16) 

F(x)= ( V(x) V(0)) =(2~) -) Vo f ei"* l k l - ) -Z"  dk 17) 
It,-I >/ i  

is finite, hence V is well defined. 
The precise statement of Theorem 1 from the Introduction is: 

Theorem 1 (The fractal case). Assume 0 < H < I  and choose 
~(2) = 2 ' + "  and fl(2) = 2 in (7). For each q > 0, ~ > 0, and ~5 e (0, H) and 
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almost every (o there exists go=go( r / ,&co)>0  and 
such that, as 2 --* 0, T)'(x, y, t, co) -+ O, provided 

y >  Vo~n t l+H + ", ~-++ Zgo 11VI] cq-R,  m (2(1 + ~) KK) I'~-m/2 t 

! 

+ fs V ( x - w s )  ds 

939 

C=C(CH, Iwl, Ixl) 

(18) 

with Cu as in (6), V is the Gaussian random field given by (16), and R =  
Ixl +(Iwl +(2( I  +()h 'K)  I/'-) t. 

We continue with the following important remark. 

Remark. The bound on y in (18) yields for t >> 1 the bound claimed 
in (8). Indeed, since for p > l ,  max l . , q~pV(y )~ (2F(O) lnp )  ~/2 and 
maxbq ~,  I V(y)l ~ (2/(0) In p)1/2 (see Proposition A.1 in the appendix and 
refs. 21, 22, it follows that the contribution of II vIIc~-R. ,,i for large t is of 
order 

(2/'(0) In{ Ix[ + ([w[ + (2( 1 + ~) xK)i/2) t] )1/2 

Similarly the contribution of ~ V ( x -  ws) ds, which, incidentally, has the 
obvious physical interpretation as the Lagrangian path following the shear 
flow for the rescaled problem derived below in (24), is of order 
t[2F(O)(ln(lxl+lw[ t))] m. Actually, since ( V ) = 0 ,  for the case with 
w ~ 0, the ergodic theorem yields that the contribution of ~ V ( x -  ws) ds is 
even more negligible for large t, since t -  1 ~ V(x - ws) ds ~ 0 as t ~ ~ .  In 
view of all the above discussion, it is now clear that for large t the formula 
in (18) yields the claim in (8) from the Introduction. 

We continue with a discussion which motivates the choice of the 
scaling in the theorem and explains the strategy of the proof. 

The definition (7) of T ;' together with (I) and (2) and a simple 
calculation yield that T ~" solves 

(i) 

(ii) 

T~ (2-T,.,. + oc2(2) ~ ~. - - - -  T z , ) +  fl-~) v;. T,. 
2fl(2) . . . . .  

2 ~ K 
in R2 x(0, ~ )  

T~'=O on R2x {0} 

(19) 
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Using (3) and the scaling properties of the white noise W, we find that 

v~(x)= 2-11Vj.(x) (20) 

where 

f ixk I /2  - - ( I / 2 ) - - H  V~.(x)=(2rO -'/2 e r (21kl) lkl W(dk) (21) 
Ikl I> 1 

In view of our assumption (15) on H, it follows that the covariance 

FAx) = (g;.(x) V;.(0)) = f ei"*~. (2 Ikl) [kl--I-2ndk (22) 
Ikl /> I 

of V~ is finite and satisfies the assumptions of Lemma A.4 in the appendix, 
hence, for each 2 > 0, V;. is a.s. locally H61der continuous. 

In view of the above, going back to (19), it is clear that one needs to 
choose ~(2) and fl(2) so that 

~(2)=f l (2)2 n (23) 

Moreover, since the theory presented here should reduce to the well-known 
results for the asymptotics of KPP reaction-diffusion equations developed 
in refs. 12, 17, and 18 if v;. is either identically zero or bounded, it is 
necessary to assume that 

But then (23) yields 

fl(2) =2  (24) 

~ ( 2 )  = 21 + H  

With all the above choices (19) can now be rewritten as 

ITS" h- ). ,+2H ), ~ --~(2T.,..,.+ 2 Tyy)+ V).(x) T.,;+ wT~. 

1 ) = 0  K a ~ + ~ - T  ( T ' - -  in N-" x(O, oo) 

~T~'=O on R-x  {0} 

Since 0 ~< O ~< 1, it is immediate from the maximum principle that 

0~< T)'~< T ~- in R2 x [0, oo) (25) 
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where T;" is the solution of the linear initial value problem 

~(2T , .x+2  T,,,,)+ V;.(x) T, .+ 

K -a , (26) 
- ~ - T  = 0  in R-x  (0, or) 

o on n2• 

Our strategy to prove Theorem 1 is to analyze T J" using its Feynman- 
Kac representation formula and to study the set in which T)" ~ 0. One can, 
of course, study the whole problem differently by introducing an exponen- 
tial change of variables Z) '=  2 in T x and studying the problem satisfied by 
Z ~" and its limit as 2 ~ 0. This is related to the methodology for the usual 
KPP equation II-'' ~7, ~81 and will be developed in a forthcoming paper. I-'1~ 

Returning to the study of (26), it is necessary to understand the a.s. 
behavior of the Gaussian process V). in the limit 2 ~ 0. The following 
proposition is an immediate consequence of (3), the assumptions on r  
and Propositions A.3 and A.6 in the appendix. 

Proposition 1.1. Let V). and V be given by (4) and (16), respec- 
tively, and assume (15). Then: 

(i) As 2--,  0, V).--, V a.s. and locally uniformly in [R. 

(ii) V is a.s. locally H61der continuous on R. Moreover, for every 
r />0,  for almost every co and O E(0, H) there exists a constant 
go=go(q, 6, co) such that for every Xoe R and R > 0  

sup IV(y) - V(x)l 
x, y~[.'Co-- R, xo+ R] 

~< Vo(1 +q)[CHRa+2(goR) 6-H II Vll~-I_n, ~1] I x - y l  H-a 

where R =  Ixo l+ R. 

We may now proceed with the proof of Theorem 1. 

Proof of  Theorem 7. 1. Throughout what follows we fix an co such 
that Proposition 1.1 holds. 

2. The solution :~x of (26) is given by the formula 

y, t) = eK'/~'ll:O ( y  + (21 +2Hh')l/2 B,_(t) T~(x, 

- -  V j . ( X -  w S  "t- (.~K) 1/2 Bl(S)) ds 

822/83/5-6-10 
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where B=(B~,  B2) is a two-dimensional Brownian motion and E is the 
expectation with respect to the measure induced by B. 

3. For i =  I, 2 define 

and 

X-(t)= sup [BAs)[ 
O<~s<.t 

It follows from elementary considerations that, for every ( >  O, 

eK'/~'P((2h')l/2Xl(t)~(2(l+~)xK)l/Zt)=o(1) as 2--*0 

em/)'P((2K)l'/2~+~'X2(t)>~2H/4)=o(1) as 2 ~ 0  

4. The last two estimates yield 

T~'(.u V~.(x-ws+(2h')'/2B,(s))ds) 

x 0 [o. ~_.,, + c) ~-tc),p- ,] • to. )...]((2K)l/z B,(t), (be) I 1/21 + H B_.(t) )] 

+o(1)  

where 0t,,.bl denotes the characteristic function of the interval [a. b]. 

, 

then 

sup I ( V -  VD(X--WS+(2K)I/2BI(s))[ =o(1) 
O<~s<~t 

Moreover, Proposition 1.1(ii) implies that, 
(2(1 +~) h'K) ~/2 t, then 

sup 
O<~s<~t 

where 

and 

Proposition 1.1(i) yields that if (2h') 1/2 X~(t)<~ (2(1 +~) xK) m t, 

as 2 ~ 0  

if (2h) '/z XL(t) <~ 

I V ( x -  ws--~- (2h') 1/2 B l ( s ) ) -  V ( x -  ws)[ ~ ~ I(,~K) I/2 Y~(t)l 1-,-6 

~ =  Vo(1 +q)(CR~o+2(Rogo/-" II VIIL~-R.R,) (27) 

Ro=2(l+~)xK)mt, R=lxl+(lwl+(2(l+~)xK)'/2)t 
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Since 0 is a decreasing function, substituting all the above estimates 
in the inequality in Step 4 above gives 

T~'(x, y, t ) - o ( 1 )  

<~ eK'/;'E 0 y -- V(x -- ws) ds - f l u / 4  _ o (  1 ) t 

- t ~ l ( 2 K ) ' / ' - X , ( t ) l " - 6 ) l  

=er,,/~.p (fit) -I y -  g ( x - w s )  d s - 2  HI4 

- o ( 1 )  t)<~(2K) '/2 IX,(t), H - a )  

In view of the bound which we are trying to achieve, below we pick 
y large enough so that 

A = y - V(x - It's) ds - 2H/40( 1 ) t ) 0 

Then 

where 

T;'(x, y, t) - o ( 1 )  ~< 2eK'/;'F((2Kt) m (( Ct) - '  A )  I / (H-6))  

F(l)  = .flj e-,'-/2 du (28) 

The elementary fact that 

F(fl)<~O(~e -p'-/2) for fl>>l (29) 

now yields that the right-hand side of the last inequality converges to 0 as 
2 ~ 0  if 

2KKt < ((Ct)-I  Ao)2/(u-6) 

where 

Ao= y- -  V ( x - w s )  ds 
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Rewriting this last inequality gives 

Ct[(2KK)I/2 t]H-6 < Y--lo V(x-- ws) ds 

and, in view of (25) and (27), the claim in Theorem 1. II 

2. ALMOST SURE UPPER BOUNDS FOR SMOOTH VELOCITY 
FIELDS 

Throughout  this section we assume 

and write 

H < 0  (30) 

ln+ R = In(max(R, e)) (31) 

The precise statement of Theorem 2 from the Introduction is: 

Theorem 2 (The smooth case). Assume that H < O ,  choose 
~(2)=2([ ln  2[) l/-" and f l (2 )=2  in (7), and let 

yo = No (2T() - l  r  

Then for any ( >  0 and almost every co, there exists a constant C =  C(co) 
such that, as 2 ~ 0, T ; ( x ,  y ,  t, co) ~ O, if 

y>C(r (32) 

Before we present the proof of Theorem 2, which follows along the 
same lines as the proof of Theorem 1, we continue with a general discus- 
sion motivating the choice of ct(2) and fl(2) above. 

In view of (30), it follows that, as 2 ~ 0 ,  

r;.(O) --, 7o (33) 

where Yo is defined in the statement of Theorem 2 and 

o f e"* k - '  F;.(x) = (v;.(x) v~.(O)) = (2n )  -~ V- " ~.,.(1 1)]k[ -'-"dk (34) 
Ikl/> 2 

is the covariance of v;. 
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It follows from refs. 22-24--see also Proposition A.1 in the 
appendix--that, as 2 ~ 0, for almost every co there exists a constant C(co) 
such that 

sup Iv).(y)[ ~< C(co) y0(ln+ R) 1/2 (35) 
y ~ [ - -R,  R ]  

Now going back to (19), which is the equation satisfied by T )', and 
using the same reasoning as in the previous section for the choice of fl(2), 
we see that it is appropriate to select 

fl(2) = 2  and ~(2)=2(11n21) 1/2 (36) 

We proceed now with the proof of Theorem 2. 

Proof of Theorem 2. 1. As in the proof of Theorem 1 and with the 
above choice (36) of fl(2) and 0~(2), here we study the a.s. asymptotics of 
the solution T a of 

T;-~(2T?;..,. + it I ln 21 ,/2 -~. -~, 

- ;  K Rz (37) 
+ wT.~.- ~- T = 0  in x(0, oe) 

T ~'=O o n e 2 •  

It follows that 

/ 
f~(x, y, t) = e*"/~'EO ~y + (21,-) ~/2 B2(t) 

- Iln 211/_, [j0 

where, as before, IF is the expectation associated with the Brownian motion 
(B,,  B,_) in N 2. 

2. Using the notation of and arguing as in Step 3 of the proof of 
Theorem 1, we see that, for every ~ > 0, 

Ta(x, 3', [) - o( 1 ) 

<~eX'/~'~- {O( Y - Iln2lm ;f v)'( x-ws+(2K) 1/"~ BI(S)/X) ds) 

x Dto._,o_(, +r KK),/_,1((2K) l/'- X,(t)) l 
) 
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3. Using the inequality in (35) with 

R = (Ixl  + (Iwl + (2( 1 + ~) KK) ~/2) t) 

in the above upper bound for T;" yields 

T;'(x, y, t) <~ eK'/;'E_O(y- t(ln R) I/2 C) 

where 

C =  C(~o) yo(ln + R) 1/2 

4. It now follows that T ) ' ~  0, as 2--+ 0, if 

y > C(o9) yo(ln + [ Ixl + (I wl + (2( 1 + ~) h'K)~/'-) t] )1/2 t 

hence the claim in (30). II 

4. ENSEMBLE-AVERAGED UPPER BOUNDS 

We begin by restating Theorem 3 from the Introduction, which is 
about the asymptotic behavior of the ensemble average over all velocity 
realizations ( T ; ) ,  given by (12). 

Theorem3 (Ensemble-averaged bounds). (A) Let 0 < H < I  
and choose ~(2), fl(2) to satisfy f l(2)=~'-/3(2)2 -'-'Is and 2p-~(2)--,0 as 
2--,0. Then, as 2 ~ 0 ,  (T ; ' )  --+0 for 

y > (21cKCo) i/2 t 3/2 ( 38 ) 

with Co = Vo(2n)- '  ~lkl~, I/"[ - ' - 2 " d k -  
(B) For H < 0, choose ~(2) = fl(2) = 2. Then, as 2 ~ 0, ( T ; )  ---, 0 for 

y > (21cK) m t (39) 

As in the previous sections, the bounds in (38) and (39) are obtained 
by analyzing the behavior as 2 ~ 0 of the ensemble average (T ; ' )  of the 
solution T;" of the linear problem. The latter is accomplished using 
arguments similar to those introduced in refs. 15, 16, and 19 exploiting the 
Feynman-Kac representation formula for T;" and the fact that v;. is a 
Gaussian random field. As mentioned in the Introduction, results similar to 
(38) and (39) were obtained independently in ref. 20 with the special choice 
of ~(2)= 2 and for the general time-dependent velocity fields in refs. 15, 16, 
and 19. 

Before we begin with the proof of Theorem 3, we recall a basic fact 
about Gaussian random fields, which we state below as a lemma. 
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L e m m a  3 .1 .  Let u be a zero-mean stationary Gaussian process 
with covariance F. If B: R ~ [~ is a continuous function, then 

(exp[i~f:u(x+B(s)'dsl)=exp[-~2~A A 2  30 [--o F(B(s)-B(s'))dsds' 1 

We continue with the proof of Theorem 3. 

Proof of Theorem 3. 1. Taking the Fourier transform with respect 
to y, using the Feynman-Kac formula, inverting afterward the Fourier 
transform, and using Lemma 3.1 yields 

( f ~ ( x ,  y, t)> 

E ~']f = e x p ~ - ~  [ O(37) 

~xp~;,~ ~,~expI 2' [~,+~,2~,~,,  1 ~}~ 
where [E is the expectation associated with the Brownian motion B on R 
and 

~I~I; {[(~) ''2 ' 1} YAB, t ) =  ~V~ flkl >/~- exp i (B(s)-B(s'))--~w(s-s') k 

• @ ~_(Ik[)Ikl- '-2'~'dk 

2. Assume that 0 < H <  1. Then 

Y.dB, t)=V~--~ 2-2"fl fi f, k,>~ ' 

x r Ikl)Ikl-'-2U)dkdsds ' 

If fl is chosen so that 

2f l - ' (2)  ~ 0 as 2--+0 

then 

Y~.(B, t) = 2-2H(C0 + o(1 )) 
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where Co is defined in the statement of the theorem. Hence 

( T;'(x, y, t ) )  = eK'/P~')(2a).) -1/2 ~_ f O(y) e -~ .... yl'-/2,,~, d~ 

with 

O~ 2 a 2 
a:. = --ff Kt + ~ t22 -2H(C o + o(I )) 

The usual estimate (29) regarding the asymptotics of the exponential now 
yields in the limit 2--+ 0 that 

( T ~ )  --+ 0 if y>(2KKCo)l /2 t  3/2 

provided that a is chosen so that 

since, with this choice, ~2/f lz~ 0 as 2 ~ 0. 

3. Assume next H < 0 .  Letting ~ ( 2 ) = f l ( 2 ) = 2 ,  we find that 

~2 

fl--~_ Y).(B, t ) = o ( 1 )  as 2 ~ 0  

Hence, again from the asymptotics of the tail of the integral of the 
Gaussian we find that, i f y  > (2Kx) ~/2 t, then, as 2 ~ 0, 

( T)'(x, y, t)) -+ 0 | 

4. A P P E N D I X  

We summarize here the facts about  stationary Oaussian random fields 
we used in this paper. For  a complete discussion about  the properties of 
such fields see refs. 22-24. For  the facts used in this paper  for which we 
could not find exact references, we sketch below some of the steps in their 
proof.122-24) 

We begin with a result about the growth of Gaussian random fields. 

Proposition A.1. Let X: • ~ R be a stationary Gaussian random 
field with mean zero and covariance F(x). Assume that almost every 
realization of X is continuous and that F(x) ~ 0 as [xl -~ co. Then 

lim (max  IX(x) l ) (2F(O)lnR)-1/2=l  a.s. 
R ~ o ~  I x l ~ R  
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Next assume (15) and consider the Gaussian random field Z;" with 
spectral representation 

~1 ei"k[ 1 -  ~ ? ( 2  Ikl)] Ikl-c,/2~-,, W(dk)(A1) Z;'(x)=(2~)-m V~ kl>~l 

and denote by ~ (x )  its covariance. Since 

y~(x) = ( Z~,(x) Z;.(O)) 

. f  #_,'k[ 1 __ ~2(,~ ikl)]2 ikl-,-2•dk (A2) = ( 2 ~ ) - '  V~ Ikl~r 

it follows from the assumptions on ~9 ~_ that 

"~ f 1/2 __l/j|~2(). --1 [ ~  (0) fkl)] 2 Ikl - 2 n d k  (27~) ly~,(x)l ~< v ;  I*-I~, ........ 

2-I p .  
"~ l/O , ~2j# , ,  --2H < v~ I1(r I1~ Ikl ' dk 

f:-. +2(1 + sup 0~_,) -, I k l - ' - 2 ' v &  
I.vl >_. 2 -1  

1 ) 22 H , ,/2, 1 + 2 ( 1 +  sup II~,~.II)5- ~ ~<V3 I[(~,oo ) II~. 2(i _H ~ u.-', ~ ,  

We summarize the above computation by writing 

Ily~ II .~. ~< e l  ~z.  (A3) 

where C| is the constant appearing in the last inequality. 
It is also necessary to find an upper bound on the modulus of con- 

tinuity of the covariance of the Gaussian process Z;. Since Z;. is stationary, 
this follows from the following computation: 

(2~)[ y;.(0) - ?;.(x) ] 

" f  (1 - ei"k)[ 1 1/', ", ZHdk =(2~t) - |  V~ Ikl~' - r  - |  

( 2 g ) - ' . V g f  (1 ,/2 ,/2 . ]2 - -,_ndk = - c o s k h ) [ ~ ( O ) - ~ ( 2 k )  [k] ' 
[k l />  | 

~<(2rO -1 va  (1 cosk)[~ ,~  (0) - | k ) ]  2 - - ~J .~. (2h Ikl - |  h 2 ~ /  

~< (2n) -I  Vo811r ( 1 - c o s k )  k - | - 2 H d k  h 2~ 
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We record the last estimate as 

[~,x(x + h)-~,z(x)[  ~< C2o'2(h) 

where 

Majda and Souganidis 

(A4) 

a(h) = h  ~ (A5) 

The next lemma is proved in ref. 22. 

L e m m a  A.2. Let X: [0, 1 ] ~ R be a continuous, separable, real- 
valued Gaussian process with zero mean and continuous covariance F(t, s). 
Suppose that 

E(X(t) - X(s)) 2 ~< a2( It - s [ )  

and that a(h) is positive and increasing in h for h >/0. Then for all positive 
integers 17 and all x/> ( 1 + 4 log n)1/2, 

P I lXl l~>x (IIFII )1/2+ 4 a(n-"2) du .~4n- e-"/-du 
1 .v 

Below we use this lemma and the estimate obtained earlier to establish 
the following result. 

P r o p o s i t i o n  A.3. Let Z;. be defined by (A1). Then, as 2 ~ 0 ,  
Z;. ~ 0 locally uniformly in x and a.s. 

Proof. 1. Here for simplicity we only argue for a sequence 2,--,  0. 

2. It suffices to show that 

A;.,, = sup IZ;..(x)l ~ 0 as 2, ---, 0 a.s. in 12 
x e [ O ,  I ]  

3. Since P(IIA;~,II>_.a)<<.P(I[A;~,II>~b) if a>~b, for any n~[~ and 
x >(1  + 4 log n) 1/2, (A3), (A4), and Lemma A.2 yield, for C =  max(C1, C2), 

P A;.>~xC 2~t+4 n-m'-du ~<4n 2 e-'"/2du 
l "A" 

4. Assume for simplicity that 2 = n-1, let 6 ~ (0, H), and define x by 
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It is then immediate that, for sufficiently large n, 

1 
x = n n -  ~ t~ ~ -tt,,'- > ( 1 + 4 log n) l/2 

C( 1 + 4n ] ? du) 11 

Hence 

P ( A l/n ~ ~l~l ~ 4n2 I~i~_,S[ C( l + 4ntr l~. n_tt,,,_, duH_l e -U'-/2 du 

It is now a simple exercise to check that 

y P < c o  
I I  

which, in view of the Borel-Cantelli lemma, yields that, for all but finitely 
many /1 'S, 

1 
A ~/,, ~< - -  a.s. in g2 

5. The proof is now complete. | 

The next result we present here is about the H61der continuity of the 
process V defined by (16). The a.s. continuity properties of Gaussian 
random fields have been the object of extensive investigations. Here we 
recall a basic result from refs. 22-24 about the H61der continuity of 
Gaussian random fields and then show how it can be modified for the 
purposes needed in this paper. 

L e m m a  A.4. Let X(t) be a real-valued, continuous, separable 
Ganssian process. Assume that E { (X( t +/7) - X(t) ) 2 } ~< a~_(h), where a2(h) 
is assumed to be concave in [ 0 , 6 ]  for some 6 > 0 ,  and that 
a(h)(ha'(h)) -1 = o(log h -  l). Then, for all x, 

IX(x + t ) -  X(x + t')[ 
lim sup ~ l o g ( l ~ ) - ]  ~ ~< 1 

I t - - t ' l  = h ~ O  
�9 t , t ' E [ - - l , l ]  

a . s .  

We apply Lemma A.4 to the stationary Gaussian random field V 
defined by (16) 

fl e 'k' Ikl--(1/2)--1t W(dk) V(x)=(2n) -~/2 Vo kl>_-, 
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which has covariance 

" I eik" tkl - l - "-. dk F(x)  = (2rr)-l  V8 kl/> l 

To this end, let x, y E [Xo - R, Xo + R]  for some R > 0 and x o E R. Then 

where ff is a stationary Gaussian random field, which satisfies, as can be 
seen after a straightforward calculation similar to the one earlier in this 
appendix, the hypotheses of Lemma A.4 with 

a2(h) = C2( Rh ) 2H 

We use the above inequalities to state the next proposition. 

P r o p o s i t i o n  A.5. Let V be given by (16). For  any ~/>0 and for 
a,s, co and every R > 0  there exists go=go(q ,  co) and C = C ( C n ,  [x[) such 
that if x, y e R and Ix - Y[ <~ Rgo, 

[ V(x + x0) - V( y + Xo)[ ~< ( 1 + J/) C(2 Ix - Y[ 2,v log R / l x  - ) ' l )  1/2 

It also follows from Lemma A.4 applied to ff that given ~1 > 0 and 
d~>0 for a.s. each co in s there exists go=go(q ,  6, co) such that 

I f f ( x ) - P ' ( y ) l < ~ ( l + l ? ) ( 2 C 2 ) ' / 2 R n l x - y [ U - a  if I x - y l < g o  

This last inequality can be easily extended for I x - Y l  > g o  by 

tff(x) V(y) I<~[( I+Pl) (2 f f ' - ) t /2RH--  ~ - " "  - -)-go z l l f f l l Z ~ - ( - 1 , 1 ) ] [ x - Y l  " - 6  

We rewrite this last inequality in terms of the original process V and 
state the conclusion as the following result. 

P r o p o s i t i o n  ,0,.6. For  each q > 0 and 0 < g < H and almost every 
co there exists go =go(~h 6, co) such that for all Xo and R > 0  

sup [ V ( x + x o ) -  V ( y + x o ) [  
x. y E [ - - R , R ]  

<~(1 + q ) [ ( 2 C 2 )  ~/'- R 6 

+ 2 ( g o R )  ~-H II VIIL"-E-~R+I,011, R§ I x - y l  n - 6  
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